

Skip to content

Wednesday, March 6, 2024

Top Menu Right
	Home
	About
	Privacy Policy
	Terms & Conditions
	Disclaimer
	Contact Us
	Guest Post

JavaTechOnline

Making Java Easy To Learn

Search for:

	Core Java
	Spring Boot Tutorial
	Microservices Tutorial
	Interview Questions
	Java Interview Questions and Answers
	Java Coding Interview Questions
	Java 8 Interview Questions
	Java Stream API Interview Questions
	Spring Boot Interview Questions & Answers
	Spring Core Interview Questions
	Microservices Interview Questions
	15 Frequently Asked Data Scientist Interview Questions

	Java Quiz
	More
	SOLID Principles
	Java Design Patterns
	Front-end
	Database
	Miscellaneous

	Blogs

X

Search for:

You are hereHome > java >

How to export data into PDF in a Spring Boot MVC Application?

	java
	pdf
	Spring Boot

 by devs5003 - November 12, 2021January 11, 20240

Last Updated on January 11th, 2024

Nobody can deny from the fact that data is everything for an application. If there is no data, no need of an application. Since data is everything for an application, we need to know each & every way where & how we can import/export data. Many a time, almost every client needs the data in the form of text reports.

When we talk about reports in a web application from the front-end, two popular reports come into mind: Excel Report, and the PDF report. Spring Boot has an integration with Excel & PDF and offers us an API to create such type of reports easily. In this article, we are going to learn about â€˜How to export data into PDF in a Spring Boot MVC Application?â€™.

Moreover, we will also provide you all the steps to build a MVC pattern based web App starting from user interface till the data layer. Obviously, our final goal is to learn â€˜How to export data into PDF in a Spring Boot MVC Application?â€™. As a development part, we will start with building an MVC based web App and end with creating an PDF report using the API provided by Spring Boot. Letâ€™s discuss our topic â€˜How to export data into PDF in a Spring Boot MVC Application?â€™ and the related concepts.

Table of Contents

Toggle

	What all Technology & Software we used?	iText Dependency

	What is PDF Export functionality in a Web Application?
	What will be the output of the PDF Export functionality?
	How doesÂ Spring Boot internally work with iText API?
	What all functionalities can you expect from this Spring Boot MVC example?	Home Page
	Invoice Registration Page
	List Of Invoices Page

	Steps: How to export data into PDF in a Spring Boot MVC Application?
	What are the steps to develop a Spring Boot MVC CRUD Application?	Step#1: Create a starter Project using an IDE
	Step#2: Update application.properties or application.yml
	Step#3: Create Entity (model) class
	Step#4: Create Repository Interface for DB access
	Step#5: Create Service Interface & Service Impl classes
	Step#6: Create Controller class
	Step#7: Create pages as part of view

	Spring Boot MVC CRUD Application Example	Use-case Details
	Step#1: Create a Spring Boot Starter Project using STS
	Step#2: Update application.properties	application.properties

	Step#3: Create Entity (model) class	Invoice.java

	Step#4: Create Repository Interface for DB access	InvoiceRepository.java
	Step#4A: Create a custom Exception class
	InvoiceNotFoundException.java

	Step#5: Create Service Interface & Service Impl classes	IInvoiceService.java
	InvoiceServiceImpl.java

	Step#6: Create Controller class	InvoiceController.java

	Step#7: Create pages for view	homePage.html
	registerInvoicePage.html
	allInvoicesPage.html
	editInvoicePage.html

	What are the steps to implement pdf export functionality in a Spring Boot MVC Application?	Step#1: Add iText dependency to pom.xml
	Step#2: Create a class to implement pdf export functionality
	Step#3: Create a method in Controller to accept pdf export requests
	Step#4: Modify UI page to send pdf export requests

	How to test the Application?
	Conclusion

What all Technology & Software we used?

â™¦ STS (Spring Tool Suite) : Version-> 4.7.1.RELEASE

â‡’ Dependent Starters : â€˜Spring Webâ€™, â€˜Spring Data JPAâ€™, â€˜MySQL Driverâ€™, â€˜Thymeleafâ€™, â€˜Lombokâ€™ and â€˜Spring Boot DevToolsâ€™

â™¥ User Interface : Thymeleaf, Bootstrap, Font-Awesome

â™¦ MySQL Database : Version ->8.0.19 MySQL Community Server

â™¦ JDK8 or later versions (Extremely tested on JDK8, JDK9 and JDK14)

iText Dependency

We require below two dependencies to be added at pom.xml.

<!-- https://mvnrepository.com/artifact/com.lowagie/itext -->
<dependency>
 <groupId>com.lowagie</groupId>
 <artifactId>itext</artifactId>
 <version>2.1.7</version>
</dependency>

What is PDF Export functionality in a Web Application?

In a web application, we generally have some pages where we show data directly or indirectly mapped to the database. We store these data into the database once the user fills some data in the UI and submits the same. Sometimes we have a requirement to get all data from the UI and save it into a PDF file. In short, we generally call this functionality as an PDF Export. Now-a-days, having this functionality in an application becomes more popular.

What will be the output of the PDF Export functionality?

When we click on the Export PDF icon given in the â€˜List Of Invoicesâ€™ page, we will get the PDF downloaded. Below is the output that we can expect after implementing this functionality in the form of PDF as a whole.

How doesÂ Spring Boot internally work with iText API?

No doubt, When we use the inbuilt functionality of Spring Boot to export PDF, the whole process becomes very easy to implement and coding steps also reduces. In fact, Spring Boot has integration with iText API to make the PDF generation process easy. We only need to create PDF specific components such as header, footer and title by using iTextÂ API. Rest of the process is handled by Spring Boot itself.

As a part of MVC pattern, Spring Boot classifies PDF generation as a View. There is an interface â€˜org.springframework.web.servlet.Viewâ€™ in Spring Boot API. An abstract class â€˜org.springframework.web.servlet.view.AbstractViewâ€™ implements â€˜org.springframework.web.servlet.Viewâ€™. Furthermore, â€˜org.springframework.web.servlet.view.document.AbstractPdfViewâ€™ extends â€˜AbstractViewâ€™.Â Here, â€˜AbstractPdfViewâ€˜ is an abstract class that we will be using to generate our Pdf. It has below abstract method in its hierarchy that we need to implement in our pdf generation class.

protected abstract void buildPdfDocument(
 Map<String, Object> model, Document document, PdfWriter writer, HttpServletRequest request, HttpServletResponse response)
 throws Exception;

If we open this method of the API, the comment above the method clearly states â€œApplication-provided subclasses must implement this method to populate the Pdf document, given the model.â€�.

What all functionalities can you expect from this Spring Boot MVC example?

Below is the summary of page-wise functionalities that you can expect from this Spring Boot MVC CRUD Example.

Home Page

1) When the user hits the application URL into the browser, he/she will see the home page that is the entry point of the application. From Here, users will be able to visit the â€˜Invoice registration pageâ€™ and the â€˜list of All invoicesâ€™ Page by clicking on the given links.

Invoice Registration Page

2) If user clicks on the â€˜Add Invoiceâ€™ link available on the home page, he/she will redirect to the invoice registration page.

3) In the Invoice registration page, the user can fill the form and save it after clicking on the â€˜Save Invoiceâ€™ button. After the successful addition of the record, a message â€œInvoice with id: â€˜XXXâ€™ is added successfully !â€� will be displayed at the bottom. From this page user can also visit to list of Invoice Pages after clicking on the â€˜List Of Invoicesâ€™ link.

4) If user clicks on the â€˜Show All Invoicesâ€™ link available on the home page, he/she will enter to the list of invoice Pages and can see all pre-existing invoices.

List Of Invoices Page

5) In the List Of Invoices page, we will have a link in the form of Icon that we can use to export all the data of the page in an excel sheet.

6) Apart from that, in the List Of Invoices page, user can perform â€˜editâ€™ or â€˜deleteâ€™ operation on the invoices. Additionally, user can also enter into the Invoice registration page after clicking on the â€˜Add Invoiceâ€™ link.

7) If user clicks on the â€˜Editâ€™ link available at List Of Invoices page, a new form will open. User can modify the value and update it into the DB after clicking on the â€˜Updateâ€™ button. After a successful update, a message â€œInvoice with id: â€˜XXXâ€™ is updated successfully !â€� will be displayed at the bottom.

8) If user clicks on the â€˜Deleteâ€™ link available at List Of Invoices page, the record will be deleted. After successful removal of the record, a message â€œInvoice with id: â€˜XXXâ€™ is deleted successfully !â€� will be displayed at the bottom.

9) From the list of Invoices page, user can go back to the home page after clicking on the â€˜Go to Homeâ€™ link.

Steps: How to export data into PDF in a Spring Boot MVC Application?

In order to implement the pdf export functionality, we need to have some data into a page on UI side. To achieve all this, we have divided the whole implementation into two parts as shown below.

1) Create an MVC web application using Spring Boot that supports CRUD operation and save some data from UI.

2) Implement pdf export functionality in this MVC web application.

However, if you already have a web application and want to implement pdf export functionality, you can directly go to the section â€˜What are the steps to implement pdf export functionality in a Spring Boot MVC Application?â€™.

What are the steps to develop a Spring Boot MVC CRUD Application?

If we develop any software following the specific steps, we minimize the chances of getting bugs. Furthermore, in case we face any issue after the implementation, we also reduce the time to fix it. Here are the common steps to develop a â€˜Spring Boot MVC CRUD Exampleâ€™.

Step#1: Create a starter Project using an IDE

Create a Spring Boot starter project using any IDE like STS, Netbeans, Intellij Idea etc. While creating Starter Project select â€˜Spring Webâ€™, â€˜Spring Data JPAâ€™, â€˜MySQL Driverâ€™, â€˜ Thymeleafâ€™, â€˜Lombokâ€™ and â€˜Spring Boot DevToolsâ€™ as starter project dependencies. Here â€˜Lombokâ€™ and â€˜Spring Boot Dev Toolsâ€™ are optional to add.

Step#2: Update application.properties or application.yml

The next step to update either application.properties or application.yml whichever is applicable. Here we need to provide datasource details like DB driver class name, DB url, DB username and DB password. Additionally, we can provide other configuration properties such as dialect, ddl-auto, show-sql etc. However, as we are talking about a basic MVC application, our purpose to update this file is just to connect through the database.

Step#3: Create Entity (model) class

Now, itâ€™s the first step to start coding. Itâ€™s a recommendation that we should start with Entity class.

Step#4: Create Repository Interface for DB access

In order to access the database programmatically, we need to create one Repository Interface that will extend any Repository Interface provided by Spring Data JPA such as JpaRepository, CrudRepository, PagingAndSortingRepository etc. as per our requirement. However, for a basic CRUD operation, we donâ€™t need to write any custom method in this interface. Spring Data JPA will provide all the methods by default that we require in a standard CRUD operation.

Step#5: Create Service Interface & Service Impl classes

Now we are in the Service Layer of the application. Here, we need to create one Service Interface and its Implementation class. Annotate this class with @Service to inform Spring Container that this class will act as a service. In order to connect to Data Layer, we need to provide dependency of the Repository interface (created in Step#4) in our service implementation class via auto-wiring.

Step#6: Create Controller class

Having followed the above steps, once we complete flow of data access, at the last, we need to create a Controller class to handle requests coming from the browser. Annotate this class with @Controller to inform Spring Container that this is a controller. The controller class will have handler methods to serve the requests for performing various operations involved in CRUD with the help of other layers. Please note that the Controller class will connect to the service layer via auto-wiring of Service Interface.

Step#7: Create pages as part of view

In this step, we need to develop user interface part from where a user interacts with the application to perform various operations included in the CRUD. Moreover, any request made by the user from UI page will be handed over to the Controller. Subsequently, based on the request nature, the controller will connect to service layer to serve the request accordingly. However, we can develop Step#6 and Step#7 interchangeably as both are dependent on each other.

Spring Boot MVC CRUD Application Example

Use-case Details

Letâ€™s assume that we have to develop an Invoice Processing Application. As the application name suggests, we must have an Invoice entity in this application. In this example, we will develop CRUD operations for Invoice as an entity accordingly.

Letâ€™s develop Spring Boot MVC CRUD Example step by step as below:

Step#1: Create a Spring Boot Starter Project using STS

Here, we are using STS (Spring tool Suite) as an IDE to develop the example. While creating Starter Project select â€˜Spring Webâ€™, â€˜Spring Data JPAâ€™, â€˜MySQL Driverâ€™, â€˜Thymeleafâ€™, â€˜Lombokâ€™ and â€˜Spring Boot DevToolsâ€™ as starter project dependencies. Here â€˜Lombokâ€™ and â€˜Spring Boot Dev Toolsâ€™ are optional to add. Even If you donâ€™t know how to create Spring Boot Starter Project, Kindly visitÂ Internal Link.Â Also, if you want to know more about Lombok, then visit internal article on â€˜How To Work With Lombok Annotations?â€™.

Step#2: Update application.properties

Letâ€™s update application.properties that we already have after creating the starter project in step#1. For example, we need to include below entries.

application.properties

server.port=8888

spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/invoice-mvc
spring.datasource.username=root
spring.datasource.password=****

spring.jpa.show-sql=true
spring.jpa.database-platform=org.hibernate.dialect.MySQL8Dialect
spring.jpa.hibernate.ddl-auto=update

Step#3: Create Entity (model) class

Since our use-case for this example is Invoice Processing, we will create an entity class as Invoice.java as below.

Invoice.java

package com.dev.springboot.model;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Invoice {

 @Id
 @GeneratedValue
 private Long id;
 private String name;
 private String location;
 private Double amount;
}

Step#4: Create Repository Interface for DB access

Next step is to create one Repository Interface. Please note that we should create a separate repository interface for each Entity in the application. This is also applicable for classes taking part in other layers accordingly. Since we have only one Entity, we will create one Repository Interface for now. As a naming convention, we will create a repository interface as InviceRepository.java as below.

InvoiceRepository.java

package com.dev.springboot.repo;

import org.springframework.data.jpa.repository.JpaRepository;
import com.dev.springboot.model.Invoice;

public interface InvoiceRepository extends JpaRepository<Invoice, Long> {

}

Step#4A: Create a custom Exception class

However, this is an additional step to handle exceptions if any user search for an Invoice by Invoice Id and the same doesnâ€™t exist at all. Letâ€™s assume that a user search from the browser using direct URL, then there is a possibility that the invoice may not exist. In order to handle this scenario, we need to provide the user a readable message. It is possible with the help of creating a custom exception class. For example, below code demonstrates the concept of creating a custom exception.

InvoiceNotFoundException.java

package com.dev.springboot.exception;

public class InvoiceNotFoundException extends RuntimeException {

 private static final long serialVersionUID = 1L;

 public InvoiceNotFoundException() {
 super();
 }

 public InvoiceNotFoundException(String customMessage) {
 super(customMessage);
 }
}

Step#5: Create Service Interface & Service Impl classes

As part of service layer, we need to create an interface and its implementation. Donâ€™t forget to include @Service at the top of the service implementation class. Additionally, inject the dependency of the Repository interface via @Autowired. For example, below code demonstrates the concept behind the service layer. As a convention, the service interface should start with the letter â€˜Iâ€™ to be recognized as an interface. Subsequently, the service implementation class should have a suffix â€˜Implâ€™ in its name as shown below.

IInvoiceService.java

package com.dev.springboot.service;

import java.util.List;
import com.dev.springboot.model.Invoice;

public interface IInvoiceService {

 public Invoice saveInvice(Invoice invoice);
 public List<Invoice> getAllInvoices();
 public Invoice getInvoiceById(Long id);
 public void deleteInvoiceById(Long id);
 public void updateInvoice(Invoice invoice);

}

InvoiceServiceImpl.java

package com.dev.springboot.service.impl;

import java.util.List;
import java.util.Optional;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import com.dev.springboot.exception.InvoiceNotFoundException;
import com.dev.springboot.model.Invoice;
import com.dev.springboot.repo.InvoiceRepository;
import com.dev.springboot.service.IInvoiceService;

@Service
public class InvoiceServiceImpl implements IInvoiceService{

 @Autowired
 private InvoiceRepository repo;

 @Override
 public Invoice saveInvice(Invoice invoice) {
 return repo.save(invoice);
 }

 @Override
 public List<Invoice> getAllInvoices() {
 return repo.findAll();
 }

 @Override
 public Invoice getInvoiceById(Long id) {
 Optional<Invoice> opt = repo.findById(id);
 if(opt.isPresent()) {
 return opt.get();
 } else {
 throw new InvoiceNotFoundException("Invoice with Id : "+id+" Not Found");
 }
 }

 @Override
 public void deleteInvoiceById(Long id) {
 repo.delete(getInvoiceById(id));
 }

 @Override
 public void updateInvoice(Invoice invoice) {
 repo.save(invoice);
 }
}

Step#6: Create Controller class

In order to handle various requests of a client, we need to create a controller as InvoiceController.java. Each handler method will return a UI page based on the criteria it implemented for. For example, below code snippet of InvoiceController will demonstrate the relation between UI page and the controller.

InvoiceController.java

package com.dev.springboot.controller;

import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;
import com.dev.springboot.exception.InvoiceNotFoundException;
import com.dev.springboot.model.Invoice;
import com.dev.springboot.service.IInvoiceService;

@Controller
@RequestMapping("/invoice")
public class InvoiceController {

 @Autowired
 private IInvoiceService service;

 @GetMapping("/")
 public String showHomePage() {
 return "homePage";
 }

 @GetMapping("/register")
 public String showRegistration() {
 return "registerInvoicePage";
 }

 @PostMapping("/save")
 public String saveInvoice(
 @ModelAttribute Invoice invoice,
 Model model
) {
 service.saveInvice(invoice);
 Long id = service.saveInvice(invoice).getId();
 String message = "Record with id : '"+id+"' is saved successfully !";
 model.addAttribute("message", message);
 return "registerInvoicePage";
 }

 @GetMapping("/getAllInvoices")
 public String getAllInvoices(
 @RequestParam(value = "message", required = false) String message,
 Model model
) {
 List<Invoice> invoices= service.getAllInvoices();
 model.addAttribute("list", invoices);
 model.addAttribute("message", message);
 return "allInvoicesPage";
 }

 @GetMapping("/edit")
 public String getEditPage(
 Model model,
 RedirectAttributes attributes,
 @RequestParam Long id
) {
 String page = null;
 try {
 Invoice invoice = service.getInvoiceById(id);
 model.addAttribute("invoice", invoice);
 page="editInvoicePage";
 } catch (InvoiceNotFoundException e) {
 e.printStackTrace();
 attributes.addAttribute("message", e.getMessage());
 page="redirect:getAllInvoices";
 }
 return page;
 }

 @PostMapping("/update")
 public String updateInvoice(
 @ModelAttribute Invoice invoice,
 RedirectAttributes attributes
) {
 service.updateInvoice(invoice);
 Long id = invoice.getId();
 attributes.addAttribute("message", "Invoice with id: '"+id+"' is updated successfully !");
 return "redirect:getAllInvoices";
 }

 @GetMapping("/delete")
 public String deleteInvoice(
 @RequestParam Long id,
 RedirectAttributes attributes
) {
 try {
 service.deleteInvoiceById(id);
 attributes.addAttribute("message", "Invoice with Id : '"+id+"' is removed successfully!");
 } catch (InvoiceNotFoundException e) {
 e.printStackTrace();
 attributes.addAttribute("message", e.getMessage());
 }
 return "redirect:getAllInvoices";
 }
}

Step#7: Create pages for view

Last part of our example is to create UI pages that will help users to interact with the application. Here, we have four pages : homePage.html as an entry point of the application, registerInvoicePage.html to fill the form and register an Invoice, allInvoicesPages.html to see the list of registered invoices, and editInvoicePage.html to update the data of any invoice accordingly.

homePage.html

 homepage.html
 <html xmlns:th="https://www.thymeleaf.org/">
<head>
<link rel="stylesheet"
	href="https://cdn.jsdelivr.net/npm//dist/css/bootstrap.min.css" />
<script
	src="https://cdn.jsdelivr.net/npm//dist/js/bootstrap.bundle.min.js"></script>
<link rel="stylesheet"
	href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.css" />
</head>
<body>
<div class="col-5">
<div class="container">

		<div class="card">
			<div class="card-header bg-info text-center text-white">
				<h3>Welcome to Invoice MVC App</h3>
			</div>
			<div class="card-body">
				<form>
					<a th:href="@{/invoice/register}" class= "btn btn-success ">Add Invoice <i class="fa fa-plus-square" aria-hidden="true"></i> Â Â Â Â Â Â Â Â Â Â Â
					<a th:href="@{/invoice/getAllInvoices}" class= "btn btn-primary">Show All Invoices
				</form>
			</div>
			</div>		
		</div> </div>
</body>
</html>

registerInvoicePage.html

 registerInvoicePage.html
 <html xmlns:th="https://www.thymeleaf.org/">
<head>
<link rel="stylesheet"
	href="https://cdn.jsdelivr.net/npm//dist/css/bootstrap.min.css" />
<script
	src="https://cdn.jsdelivr.net/npm//dist/js/bootstrap.bundle.min.js"></script>
<link rel="stylesheet"
	href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.css" />
</head>
<body>
<div class="col-5">
<div class="container">

		<div class="card">
			<div class="card-header bg-info text-center text-white">
				<h3>Register Invoices</h3>
			</div>
			<div class="card-body">
				<form th:action="@{/invoice/save}" method="POST" id="invoiceForm">
					<div class="row">
						<div class="col-2">
							<label for="name">NAME</label>
						</div>
						<div class="col-4">
							<input type="text" name="name" id="name"
								class="form-control" />
						</div>
					</div>

					<div class="row">
						<div class="col-2">
							<label for="location">LOCATION</label>
						</div>
						<div class="col-4">
							<input type="text" name="location" id="location"
								class="form-control" />
						</div>
					</div>

					<div class="row">
						<div class="col-2">
							<label for="amount">AMOUNT</label>
						</div>
						<div class="col-4">
							<input type="text" name="amount" id="amount"
								class="form-control" />
						</div>
					</div>

					<button type="submit" class="btn btn-success">Save Invoice <i class="fa fa-plus-square" aria-hidden="true"></i></button> Â Â Â Â Â Â Â Â Â Â Â
					<a th:href="@{/invoice/getAllInvoices}" class= "btn btn-primary">Show All Invoices
				</form>
			</div>
			<div th:if="${message!=null}" class="card-footer bg-white text-info">
				
			</div>
			</div>		
		</div> </div>
</body>
</html>

allInvoicesPage.html

 allInvoicesPage.html

<html xmlns:th="https://www.thymeleaf.org/">
<head>
<link rel="stylesheet"
	href="https://cdn.jsdelivr.net/npm//dist/css/bootstrap.min.css" />
<script
	src="https://cdn.jsdelivr.net/npm//dist/js/bootstrap.bundle.min.js"></script>
<link rel="stylesheet"
	href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.css" />
</head>

<body>
 <div class="col-5">
	<div class="container">
		<div class="card">
			<div class="card-header bg-info text-center text-white">
				<h3>List Of Invoices</h3>
			</div>
			<div class="card-body">
				<table class="table table-hover">
					<tr class="bg-dark text-white">
						<th>ID</th>
						<th>Name</th>
						<th>Location</th>
						<th>Amount</th>
						<th>Edit/Delete</th>
					</tr>
					<tr th:each="ob:${list}">
						<td th:text=${ob.id}></td>
						<td th:text=${ob.name}></td>
						<td th:text=${ob.location}></td>
						<td th:text=${ob.amount}></td>
						<td><a th:href="@{/invoice/delete(id=${ob.id})}" class= "btn btn-danger">DELETE <i class="fa fa-trash-o" aria-hidden="true"></i> |
						 <a th:href="@{/invoice/edit(id=${ob.id})}" class="btn btn-warning">EDIT <i class="fa fa-pencil-square-o" aria-hidden="true"></i></td>
					</tr>
				</table>
				<a th:href="@{/invoice/register}" class= "btn btn-success ">Add Invoice <i class="fa fa-plus-square" aria-hidden="true"></i>
				<a th:href="@{/invoice/}" class= "btn btn-primary">Go to Home
			</div>
			<div class="card-footer bg-white text-success" th:if="${message!=null}">
				
			</div>
		</div>
	</div></div>
</body>
</html>

editInvoicePage.html

 editInvoicePage.html
 <html xmlns:th="https://www.thymeleaf.org/">
 <head>
 <link
 rel="stylesheet"
 href="https://cdn.jsdelivr.net/npm//dist/css/bootstrap.min.css"
 />
 <script src="https://cdn.jsdelivr.net/npm//dist/js/bootstrap.bundle.min.js"></script>
 <link
 rel="stylesheet"
 href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.css"
 />
 </head>
 <body>
 <div class="col-5">
 <div class="container">
 <div class="card">
 <div class="card-header bg-primary text-white text-center">
 <h3>Edit Invoice</h3>
 </div>
 <div class="card-body">
 <form th:action="@{/invoice/update}" method="POST" id="invoiceForm" th:object="${invoice}">
 <div class="row">
 <div class="col-2">
 <label for="id">ID</label>
 </div>
 <div class="col-4">
 <input type="text" th:field="*{id}" class="form-control" readonly/>
 </div>
 </div>

 <div class="row">
 <div class="col-2">
 <label for="name">NAME</label>
 </div>
 <div class="col-4">
 <input type="text" th:field="*{name}" class="form-control"/>
 </div>
 </div>

 <div class="row">
 <div class="col-2">
 <label for="location">LOCATION</label>
 </div>
 <div class="col-4">
 <input type="text" th:field="*{location}" class="form-control"/>
 </div>
 </div>

 <div class="row">
 <div class="col-2">
 <label for="amount">AMOUNT</label>
 </div>
 <div class="col-4">
 <input type="text" th:field="*{amount}" class="form-control" />
 </div>
 </div>

 <button type="submit" class="btn btn-success">Update <i class="fa fa-wrench" aria-hidden="true"></i></button>Â Â Â Â Â Â Â Â Â Â Â
				<a th:href="@{/invoice/getAllInvoices}" class= "btn btn-primary">Show All Invoices
 </form>
 </div>
 <div class="card-footer"></div>
 </div>
 </div></div>
 </body>
</html>

What are the steps to implement pdf export functionality in a Spring Boot MVC Application?

As we have already built a Spring Boot web based MVC application, now in this section we will particularly talk about the changes that we need to do to get the pdf export functionality implemented. Moreover, this section is very specific to our article â€˜How to export data into PDF in a Spring Boot MVC Application?â€™. Letâ€™s do it step by step as shown below.

Step#1: Add iText dependency to pom.xml

First of all add below iText dependencies to pom.xml.

<!-- https://mvnrepository.com/artifact/com.lowagie/itext -->
<dependency>
 <groupId>com.lowagie</groupId>
 <artifactId>itext</artifactId>
 <version>2.1.7</version>
</dependency>

Step#2: Create a class to implement pdf export functionality

In order to implement pdf export functionality, we will create a class, letâ€™s say InvoiceDataPdfExport.java that will extend AbstractPdfView.java as below. As aforementioned, AbstractPdfView is provided by Spring framework under package â€˜org.springframework.web.servlet.view.documentâ€™.

package com.dev.springboot.view;

import java.awt.Color;
import java.util.Date;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.view.document.AbstractPdfView;
import com.dev.springboot.model.Invoice;
import com.lowagie.text.Document;
import com.lowagie.text.Element;
import com.lowagie.text.Font;
import com.lowagie.text.HeaderFooter;
import com.lowagie.text.Paragraph;
import com.lowagie.text.Phrase;
import com.lowagie.text.pdf.PdfPTable;
import com.lowagie.text.pdf.PdfWriter;

public class InvoiceDataPdfExport extends AbstractPdfView {

 @Override
 protected void buildPdfMetadata(Map<String, Object> model, Document document, HttpServletRequest request)
 {
 Font headerFont = new Font(Font.TIMES_ROMAN, 20, Font.BOLD, Color.magenta);
 HeaderFooter header = new HeaderFooter(new Phrase("All Invoices PDF View", headerFont), false);
 header.setAlignment(Element.ALIGN_CENTER);
 document.setHeader(header);

 Font dateFont = new Font(Font.HELVETICA, 12, Font.NORMAL, Color.BLUE);

 HeaderFooter footer = new HeaderFooter(new Phrase("PDF Export Executed On : "+new Date(), dateFont), true);
 footer.setAlignment(Element.ALIGN_CENTER);
 document.setFooter(footer);
 }

 @Override
 protected void buildPdfDocument(
 Map<String, Object> model,
 Document document,
 PdfWriter writer,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception
 {

 //download PDF with a given filename
 response.addHeader("Content-Disposition", "attachment;filename=Invoices.pdf");

 //read data from controller
 List<Invoice> list = (List<Invoice>) model.get("list");

 //create element
 Font titleFont = new Font(Font.TIMES_ROMAN, 24, Font.BOLD, Color.blue);
 Paragraph title = new Paragraph("ALL INVOICES DATA", titleFont);
 title.setAlignment(Element.ALIGN_CENTER);
 title.setSpacingBefore(20.0f);
 title.setSpacingAfter(25.0f);
 //add to document
 document.add(title);

 Font tableHead = new Font(Font.TIMES_ROMAN, 12, Font.BOLD, Color.blue);
 PdfPTable table = new PdfPTable(4);// no.of columns
 table.addCell(new Phrase("ID",tableHead));
 table.addCell(new Phrase("NAME",tableHead));
 table.addCell(new Phrase("LOCATION",tableHead));
 table.addCell(new Phrase("AMOUNT",tableHead));

 for(Invoice invoice : list) {
 table.addCell(invoice.getId().toString());
 table.addCell(invoice.getName());
 table.addCell(invoice.getLocation());
 table.addCell(invoice.getAmount().toString());
 }
 //add table data to document
 document.add(table);
 }
}

Step#3: Create a method in Controller to accept pdf export requests

Add a method as shown below in the code snippet in your InvoiceController.java. When we click on the Pdf Export link given in the UI, request will come to this method.

/***
* Export data to pdf file
*/
@GetMapping("/pdf")
public ModelAndView exportToPdf() {
 ModelAndView mav = new ModelAndView();
 mav.setView(new InvoiceDataPdfExport());
 //read data from DB
 List<Invoice> list= service.getAllInvoices();
 //send to pdfImpl class
 mav.addObject("list", list);
 return mav;
}

Step#4: Modify UI page to send pdf export requests

Add below code snippet in allInvoicesPage.html just before the start of â€˜tableâ€™ tag.

<div>
<a th:href="@{/invoice/pdf}" class="btn btn-success">Export data into PDF
 <i class="fa fa-file-pdf-o" aria-hidden="true"></i>
</div>

The structure of the project should look like below:

How to test the Application?

In order to test the application, open a browser and hit the URL http://localhost:8888/invoice/. On hitting the URL, home page will get displayed. Further, we need to click on â€˜Add Invoiceâ€™ link to get into the â€˜Register Invoicesâ€™ page. From there, we need to add some invoices to test the pdf export functionality. Next, in the â€˜List of Invoicesâ€™ page, we should be able to see the PDF icon labelled as â€œExport data into PDFâ€�. In order to get the exported pdf, we need to click on that icon. Once clicked, the pdf will get downloaded by the browser.

Conclusion

In this article we have covered all the theoretical and example part of â€˜How to export data into PDF in a Spring Boot MVC Application?â€™, finally, you should be able to build a functionality of pdf export using Spring Boot. Similarly, we expect from you to further extend this example, as per your requirement. Also try to implement it in your project accordingly. Moreover, Feel free to provide your comments in the comments section below.

Â

Related

Tagged apache poi export to pdf apache poi pdf export creating PDF report in Spring Boot export to pdf java Generate PDF files with Spring Boot using ITextPDF How do I export data from Java to pdf? How do I export from spring boot? How do I return a pdf file as response in spring boot? How to export data from springboot to pdf How to export data into Pdf in a Spring Boot MVC Application? How to Export data to PDF in Spring Boot How to Export Data to PDF in Spring Boot Application How to Generate a Pdf Report in a Spring Boot java pdf export return pdf from rest api spring boot Spring Boot Controller export a PDF Spring Boot Export Data to PDF Example spring boot response pdf file spring boot return pdf spring boot return pdf file Spring Boot Web Application Download pdf File Spring Boot: Download Pdf file from MySQL database table Spring MVC - Generate Pdf Example spring return pdf Working with iText pdf in Java

Post navigation

Previous article
How to export data into Excel in a Spring Boot MVC Application?
Next article
Apache Excel POI Utils : A Java Excel API

Leave a Reply Cancel reply

Î”

FOLLOW US

Recent Posts

	
Spring Data MongoDB Tutorial

	
How to implement Fault Tolerance in Microservices using Resilience4j?

	
Spring Boot Cassandra CRUD Examples

	
Singleton Class In Java With Examples: A Comprehensive Guide

	
Static Keyword In Java

	
Spring Batch Example CSV to MySQL: JPA Batch Insert

	
JavaFX Tutorial: How To Create Rich Desktop Applications In Java?

	
Features Of Spring Boot

	
Singleton Design Pattern in Java with all Scenarios

	
Java Reference Tutorial For Young Programmers

	Home
	About
	Privacy Policy
	Terms & Conditions
	Disclaimer
	Contact Us
	Guest Post

Select Category
CategoriesSelect Category
Angular
Apache Kafka
API Gateway
CAPTCHA Validation
Cassandra
ChatGPT
Collections
collections in java
Core Java
Data Science
Database
Design
Design Patterns
Design Principles
Developer Tools
Docker
eclipse
Elasticsearch
ELK Stack
Entity Relationship
Eureka
Excel
Feign Client
Google Bard
Google reCAPTCHA Validation
Heroku
Hibernate
Hystrix Circuit Breaker
IDE
interface in java
Interview
java
Java 17
Java 8
Java 9
Java Exceptions
Java Testing
javaFX
JavaScript
jdk 17
jdk 18
jdk 19
jdk 20
jdk15
jdk16
JPA
JSON
JVM
Logging
Lombok Java
MCQ
Microservices
MongoDB
MVC
NoSQL
OAuth
OTT
pdf
poiji
Programming
Record In Java
Redis
Resilience4j
RestTemplate
Scheduling
Security
Sleuth & Zipkin
Spring
Spring AI
Spring Batch
Spring Boot
Spring Boot 3
Spring Boot REST
Spring Cloud
Spring Cloud Config Server
Spring Core
Spring Data JPA
Spring Data REST
Spring Reactive Webflux
Spring Security
Spring WebFlux
Stream API
WebClient

Collections
Core Java
Design
Design Principles
eclipse
Hibernate
Interview
java
Java 8
Java 17
jdk 17
MCQ
Microservices
MongoDB
Spring
Spring Boot
Spring Boot 3
Spring Cloud
Spring Core
Spring Security

 Â© 2024

Accelerated by Cloudways
|
https://javatechonline.com

Footer Menu
	Home
	About
	Privacy Policy
	Terms & Conditions
	Disclaimer
	Contact Us
	Guest Post

 Top

